Neutron Powder Profile Studies of the Gamma Uranium Trioxide Phases

B. O. LOOPSTRA*, J. C. TAYLOR, and A. B. WAUGH

Chemical Technology Division, Australian Atomic Energy Commission Research Establishment, Private Mail Bag, Sutherland, N.S.W., 2232, Australia

Received May 28, 1976; in final form, August 9, 1976

Abstract

Neutron powder profile studies show the existence of three phases in gamma uranium trioxide between $373^{\circ} \mathrm{K}$ and $77^{\circ} \mathrm{K}$. The three phases are closely related and the transitions smooth and displacive. At $373^{\circ} \mathrm{K}, \gamma-\mathrm{UO}_{3}$ is tetragonal, with $a=6.9013$ (5) and $c=19.9754$ (18) \AA, and space group $14_{1} / a m d\left(\mathrm{D}_{4 n}^{19}\right)$. $\mathrm{At} 323^{\circ} \mathrm{K}, \gamma-\mathrm{UO}_{3}$ becomes orthorhombic, space group $F_{a d a}\left(\mathrm{D}_{2 h}^{24}\right)$, with the cell dimensions ($293^{\circ} \mathrm{K}$) $a=9.787$ (3), $b=19.932$ (4) and $c=9.705$ (3) \AA. There is a further transition between $293^{\circ} \mathrm{K}$ and $77^{\circ} \mathrm{K}$, and, at $77^{\circ} \mathrm{K}$, the orthorhombic dimensions of the pseudocell are $a=9.8225$ (7), $b=19.8487$ (15), and $c=9.6318$ (7) \AA. The neutron diffraction studies show that, in all three phases, the coordination polyhedra of the two crystallographically distinct uranium atoms are octahedral and (dodecahedral-2) respectively. At $293^{\circ} \mathrm{K}$, the shortest U-O distance is 1.796 (6) \AA, and thus there are no pure uranyl bonds, in agreement with the infrared spectrum. The U-O distances arc precise to about $\pm 0.006 \AA$, about ten times the precision of an earlier X-ray single-crystal study, in which the conclusions were in conflict with the infrared spectrum. The structure is made up of parallel chains of edge-fused $U(2)$ octahedra, cross-linked by $U(1)$ dodecahedra. The atomic shifts are not great in going from $373^{\circ} \mathrm{K}$ to $77^{\circ} \mathrm{K}$; at $293^{\circ} \mathrm{K}$ the data will refine in the pseudotetragonal cell as well as the true orthorhombic cell, and the $77^{\circ} \mathrm{K}$ data will refine in the $F_{d d d}$ cell.

Introduction

The oxides UO_{3} show a great variety of structural patterns; $\alpha, \beta, \gamma, \delta$ and $\varepsilon-\mathrm{UO}_{3}$ are known, as well as a high pressure form (1). A tentative phase diagram for the $\mathrm{UO}_{3} / \mathrm{U}_{3} \mathrm{O}_{8}$ system has been given (2). Engmann and de Wolff (3) determined the basic structure of $\gamma-\mathrm{UO}_{3}$ from X-ray powder photographs, in the tetragonal space group $14_{1} /$ amd ($\mathrm{D}_{4 h}^{19}$). Line splittings in their photographs indicated that, at room temperature, the structure was really of lower symmetry, but strongly pseudotetragonal.

Siegel and Hoekstra (4) studied $\gamma-\mathrm{UO}_{3}$ by X-ray single-crystal diffraction and found the true unit cell to be orthorhombic, $F_{\text {ddd }}\left(\mathrm{D}_{2 h}^{24}\right)$, with twice the volume of the tetragonal cell. The orthorhombic cell retained the long $20 \AA c$-repeat of the tetragonal cell, but the

[^0]other two orthorhombic cell edges were diagonals of the tetragonal basal plane (see Table I for unit cell data). They refined a model in the orthorhombic cell differing only slightly from the tetragonal model.

They concluded the two independent uranium atoms, $\mathrm{U}(1)$ and $\mathrm{U}(2)$ were both octahedrally coordinated by oxygen atoms. A major difficulty with this interpretation was that it could not be reconciled with the infrared spectrum (4) which showed the absence of strong uranyl bonds of length $\sim 1.70 \AA$. In the single crystal X -ray study (4) collinear bonds $\mathrm{U}(1)-\mathrm{O}(3)$ of length 1.79 (6) \AA appeared to be uranyl bonds. In the X-ray studies, the geometry of the coordinated oxygens could not be examined in detail because of the low accuracy in the oxygen positions.

Because it was obvious the oxygen positions would have to be more precisely determined in order to interpret the bonding patterns in $\gamma-\mathrm{UO}_{3}$, the present series of neutron diffrac-

TABLE I
Unit Cell Dimensions ${ }^{a}$ for Tetragonal ($I 4_{1} / a m d$) and Orthorhombic ($F_{d d d}$) Gamma UO 3 (P Petten, $\mathrm{LH}=$ Lucas Heights)

| Data | Crystal system | $a(\AA)$ | $b(\AA)$ | $c(\AA)$ | $U\left(\AA^{3}\right)$ | Z | $D_{x}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $373^{\circ} \mathbf{K}, \mathbf{P}$ | Tetragonal | $6.9013(5)$ | $=\mathrm{a}$ | $19.9754(18)$ | $951.4(2)$ | 16 | 7.99 |
| $293^{\circ} \mathbf{K}$, LH | Pseudotetragonal | $6.8920(14)$ | $=\mathrm{a}$ | $19.9290(48)$ | 946.6 | 16 | 8.03 |
| $293^{\circ} \mathbf{K}$, Ref. (3) Pseudotetragonal | 6.89 | $=\mathrm{a}$ | 19.94 | 946.6 | 16 | 8.03 | |
| $293^{\circ} \mathbf{K}$, Ref. (4) Orthorhombic | $9.813(8)$ | $19.93(8)$ | $9.711(8)$ | 1899.2 | 32 | 8.00 | |
| $293^{\circ} \mathbf{K}, \mathbf{L H}$ | Orthorhombic | $9.787(3)$ | $19.932(4)$ | $9.705(3)$ | $1893.3(10)$ | 32 | 8.03 |
| $77^{\circ} \mathbf{K}, \mathbf{P}$ | Pseudo- $F_{\text {ddd }}$ | $9.8225(7)$ | $19.8487(15)$ | $9.6318(7)$ | $1877.9(4)$ | - | - |
| $77^{\circ} \mathbf{K}, \mathbf{L H}$ | Pseudo- $F_{d d d}$ | $9.821(4)$ | $19.868(8)$ | $9.654(4)$ | $1884(2)$ | - | - |

${ }^{a}$ Cell dimension errors do not include errors in the wavelengths.
tion studies on $\gamma-\mathrm{UO}_{3}$ was undertaken. It was thought that this technique, with the powerful profile analysis method of Rietveld (5) would give the required precision.

It was also thought that, since the room temperature structure was nearly tetragonal, it would become truly tetragonal at higher temperatures. Guinier-Lenné photographs taken by one of us (B. O. L.) showed this to be the case and the transition temperature to be about $323^{\circ} \mathrm{K}$. Thus, neutron diffraction data were collected at $373^{\circ} \mathrm{K}$ (Petten), $293^{\circ} \mathrm{K}$ (Lucas Heights and Petten) and $77^{\circ} \mathrm{K}$ (Lucas Heights and Petten). The analysis of these data, and the resulting conclusions about the structure of $\gamma-\mathrm{UO}_{3}$ are presented in this paper.

Experimental

The Lucas Heights $\gamma-\mathrm{UO}_{3}$ sample was prepared by reacting $\mathrm{U}_{3} \mathrm{O}_{8}$ and oxygen at $823^{\circ} \mathrm{K}$ and 6.9 MPa for 48 hours in a stainless steel autoclave. A Guinier photograph showed the sample was pure, and gave the same line splittings as observed by Engmann and de Wolff (3). The sample was kept away from atmospheric moisture at all times because of its slow reaction giving $\mathrm{UO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. The Petten sample was prepared by heating uranyl nitrate hexahydrate first at $470^{\circ} \mathrm{K}$ until dry; thereafter it was powdered and heated very slowly to about $770^{\circ} \mathrm{K}$ in air or oxygen.

The Lucas Heights neutron patterns were taken at $293^{\circ} \mathrm{K}$ and $77^{\circ} \mathrm{K}$ with the elastic diffraction technique (6), a wavelength of
$1.085 \AA$, steps of $0.1^{\circ} 2 \theta$ and a monitor setting of 10^{5}. The sample was enclosed in a quartz tube for the $293^{\circ} \mathrm{K}$ run and in a Kel-F tube for the $77^{\circ} \mathrm{K}$ run. The complete background intensity was included in the Rietveld weighting scheme.

The Petten neutron patterns were taken at $373^{\circ} \mathrm{K}$ (monitor, 535×10^{3}) and $77^{\circ} \mathrm{K}$ with $\lambda=2.565 \AA$, with steps of $0.18^{\circ} 2 \theta$ for the $373^{\circ} \mathrm{K}$ pattern and $0.072^{\circ} 2 \theta$ for the $77^{\circ} \mathrm{K}$ pattern. The $77^{\circ} \mathrm{K}$ pattern was the sum of three separate runs with monitor settings between 130×10^{3} and 270×10^{3}. The collimation conditions were (no α_{2} slit): α_{1} and $\alpha_{3}=$ 30^{\prime} for the $373^{\circ} \mathrm{K}$ pattern and α_{1} and $\alpha_{3}=10^{\prime}$ for the $77^{\circ} \mathrm{K}$ pattern. In the tables in this paper, the Petten data is denoted by a P and the Lucas Heights data by LH.

Neutron Profile Refinements

(a) Refinement of Tetragonal $373^{\circ} \mathrm{K}$ Data and Refinement of the $293^{\circ} \mathrm{K}$ Data in the Tetragonal Space Group

The Guinier-Lenné photograph showed that the tetragonal-orthorhombic transition at $323^{\circ} \mathrm{K}$ was smooth and displacive. The $293^{\circ} \mathrm{K}$ data were therefore refined with the tetragonal pseudocell, although the structure was actually just below the transition, in the orthorhombic region. This was done in order to check on the departure from tetragonal symmetry just below the transition.

The profile refinements were carried out with the Rietveld (5) program, with the neutron
scattering lengths (7) $b_{\mathrm{U}}=8.5 \mathrm{fm}$ and $b_{\mathrm{O}}=5.8$ fm . The positional parameters for the refinements in $I 4_{1} /$ amd for the $373^{\circ} \mathrm{K}$ and $293^{\circ} \mathrm{K}$ data are compared with the original tetragonal cell coordinates of Engmann and de Wolff (3) in Table II (to preserve consistency with the orthorhombic $F_{d d d}$ cell, the original (3) nomenclature for the oxygen atoms has been changed).

The neutron positional parameters in the true tetragonal cell at $373^{\circ} \mathrm{K}$ and the pseudotetragonal cell at $293^{\circ} \mathrm{K}$ agree very closely, Table II. Thus, the orthorhombic structure at $293^{\circ} \mathrm{K}$ is only a very slight distortion from tetragonal symmetry. The original positions of Engmann and de Wolff (3) were essentially correct, but in error by up to $0.26 \AA$.

The residuals

$$
\begin{aligned}
& R_{1}=\sum\left|y_{0}-\frac{1}{c} y_{c}\right| / \sum\left|y_{0}\right| \\
& R_{2}=\left(\sum w\left(y_{0}-\frac{1}{c} y_{c}\right)^{2} / \sum w y_{o}^{2}\right)^{1 / 2} \\
& R_{3}=\sum\left|I_{0}-\frac{1}{c} I_{c}\right| / \sum I_{0} \\
& R_{\text {expected }}=\left((\mathrm{NO}-\mathrm{NV}) / \sum w y_{0}^{2}\right)^{1 / 2}
\end{aligned}
$$

and

$$
\chi^{2}=\sum w\left(y_{0}-\frac{1}{c} y_{c}\right)^{2} /(\mathrm{NO}-\mathrm{NV})
$$

are given in Table III. The symbols have their usual meanings (5). The y 's are pattern counts corrected for background, and the I 's are integrated intensities for the ($h k l$) lines. The observed and calculated profiles for the $373^{\circ} \mathrm{K}$ data are given in Fig. 1.
(b) Refinement of $293^{\circ} \mathrm{K}$ Data in the True Orthorhombic Cell
γ - UO_{3} is orthorhombic at $293^{\circ} \mathrm{K}$ with space group $F_{d d}$, and the cell dimensions in Table I. The orthorhombic cell is related to the tetragonal cell as follows. The tetragonal $20 \AA$ repeat is preserved, (orthorhombic b-axis) but the orthorhombic a - and c-axes are diagonals of the tetragonal basal plane. At the transition point,

$$
a_{\mathrm{ortho}}=c_{\mathrm{ortho}}=\sqrt{2} a_{\mathrm{ietra}}
$$

and

$$
b_{\text {ortho }}=c_{\text {tetra }}
$$

TABLE II
Positional Parameters for $\gamma-\mathrm{UO}_{3}$ in the Truly Tetragonal Phase at $373^{\circ} \mathrm{K}$, compared with (a) the Positional Parameters from the Pseudotetragonal Cell Refinement of the $293^{\circ} \mathrm{K}$ Data, and (b) the Original Parameters of Engmann and de Wolff (3). All x-coordinates are Zero.

Atom	$10^{4} y$	$10^{4} z$	$B\left(\AA^{2}\right)$	Data set
$\mathrm{U}(1)$	2500	$0618(3)$	$1.42(11)$	$373^{\circ} \mathrm{K}, \mathrm{P}$
	2500	$0621(2)$	$0.62(12)$	$293^{\circ} \mathrm{K}$, LH
	2500	0600		$293^{\circ} \mathrm{K}$, Ref. (3)
$\mathrm{U}(2)$	0000	5000	$1.42(11)$	$373^{\circ} \mathrm{K}, \mathrm{P}$
	0000	5000	$0.15(10)$	$293^{\circ} \mathrm{K}, \mathrm{LH}$
	0000	5000		$293^{\circ} \mathrm{K}$, Ref. (3)
$\mathrm{O}(1)$	$9476(7)$	$4073(3)$	$1.96(11)$	$373^{\circ} \mathrm{K}, \mathrm{P}$
	$9487(8)$	$4076(3)$	$0.74(14)$	$293^{\circ} \mathrm{K}, \mathrm{LH}$
	9430	4060		$293^{\circ} \mathrm{K}$, Ref. (3)
$\mathrm{O}(2)$	$0496(7)$	$2645(3)$	$1.96(11)$	$373^{\circ} \mathrm{K}, \mathrm{P}$
	$0482(8)$	$2652(3)$	$0.97(17)$	$293^{\circ} \mathrm{K}$, LH
	0390	2640		$293^{\circ} \mathrm{K}$, Ref. (3)
$\mathrm{O}(3)$	$5100(8)$	$0660(3)$	$1.96(11)$	$373^{\circ} \mathrm{K}, \mathrm{P}$
	$5103(10)$	$0666(4)$	$2.00(14)$	$293^{\circ} \mathrm{K}$, LH
	5470	0700		$293^{\circ} \mathrm{K}$, Ref. (3)

TABLE III
R-Factors and χ^{2} Values for the Refinements of the $373^{\circ} \mathrm{K}$ and $293^{\circ} \mathrm{K}$ Data in the Tetragonal Space Group $14_{1} /$ amd

Data	R_{1}	R_{2}	R_{3}	$R_{\text {expected }}$	NO	NV	χ^{2}
Truly tetragonal, $373^{\circ} \mathrm{K}$ data	0.063	0.073	0.097	0.035	398	16	7.7
Pseudotetragonal, $293^{\circ} \mathrm{K}$ data	0.103	0.117	0.067	0.061	606	19	3.7

Fig. 1. Observed and calculated neutron powder diffraction profiles for the tetragonal phase of $\gamma-\mathrm{UO}_{3}$ at $373^{\circ} \mathrm{K}$ (Petten data).

The orthorhombic coordinates are related to the tetragonal coordinates by the formulas:

$$
\begin{aligned}
& x_{\text {ortho }}=0.25-0.5 x_{\mathrm{tetra}}+0.5 y_{\mathrm{tetra}} \\
& y_{\text {ortho }}=z_{\text {tetra }} \\
& z_{\text {ortho }}=0.25+0.5 x_{\mathrm{tetra}}+0.5 y_{\mathrm{tetra}}
\end{aligned}
$$

The parameters from the profile refinement of the $293^{\circ} \mathrm{K}$ data are given in Table IV, where they are compared with the X-ray coordinates of Siegel and Hoekstra (4).

Table IV shows that the errors in the neutron profile refinement are up to 10 times less than the errors in the X-ray study, although the

X-ray parameters are essentially correct. The large X-ray errors caused the difficulties in interpreting the X -ray results.

For a strictly tetragonal structure, the orthorhombic x and z coordinates should be identical for each atom. It is seen in Table IV there are significant differences, the largest being for $\mathrm{O}(3)$, where $x \mathrm{O}(3)=-0.0001(12)$ and $z \mathrm{O}(3)=-0.0096(13)$. This is a significant deviation from tetragonal symmetry.

The R-factors for the refinement of the neutron data at $293^{\circ} \mathrm{K}$ were $R_{1}=0.083$, $R_{2}=0.098, R_{3}=0.056$, and $R_{\text {expected }}=0.062$. NO, NV and χ^{2} were 553,23 and 2.5 , the last

TABLE IV
Structural Parameters from the Neutron Profile Refinement of the $293^{\circ} \mathrm{K}$ Data in the True Orthorhombic Cell, compared with the Single Crystal X-ray Parameters of Siegel and Hoekstra (4)

Atom	Data	$10^{4} x$	$10^{4} y$	$10^{4} z$	$B\left(\AA^{2}\right)$
$\mathrm{U}(1)$	$293^{\circ} \mathrm{K}$, LH	1250	$3115(3)$	1250	$0.98(12)$
$\mathrm{U}(1)$	X-ray Single Crystal (4)	1250	$3121(1)$	1250	$1.15(7)$
$\mathrm{U}(2)$	$293^{\circ} \mathrm{K}$, LII	5000	5000	5000	$0.45(9)$
$\mathrm{U}(2)$	X-ray Single Crystal (4)	5000	5000	5000	$1.19(7)$
$\mathrm{O}(1)$	$293^{\circ} \mathrm{K}$, LH	$0261(12)$	$4081(3)$	$0258(12)$	$1.32(15)$
$\mathrm{O}(1)$	X-ray Single Crystal (4)	$0290(30)$	$4080(20)$	$0310(30)$	$1.40(70)$
$\mathrm{O}(2)$	293 $3^{\circ} \mathrm{K}$, LH	$-0284(12)$	$2652(3)$	$-0205(12)$	$1.13(15)$
$\mathrm{O}(2)$	X-ray Single Crystal (4)	$-0244(65)$	$2700(30)$	$-0330(60)$	$3.10(110)$
$\mathrm{O}(3)$	$293^{\circ} \mathrm{K}$, LH	$-0001(12)$	$-0663(3)$	$-0096(13)$	$1.96(14)$
$\mathrm{O}(3)$	X-ray Single Crystal (4)	$-0030(60)$	$-0670(30)$	$-0070(60)$	$3.20(110)$

Fig. 2. Observed and calculated neutron powder profiles for orthorhombic $\gamma-\mathrm{UO}_{3}$ at $293^{\circ} \mathrm{K}$ (Lucas Heights data).
residual showing that the orthorhombic structure gave a better fit to the data than the pseudotetragonal refinement, for which χ^{2} was 3.7 (Table III). The observed and calculated profiles at $293^{\circ} \mathrm{K}$ are given in Fig. 2. A refinement was also carried out for a pattern collected at Petten at $293^{\circ} \mathrm{K}$, but as the results were identical with the Lucas Heights results, they are not presented here.
(c) Refinement of Data at $77^{\circ} \mathrm{K}$ collected at Petten and Lucas Heights

Refinement of data sets at $77^{\circ} \mathrm{K}$ collected independently and with different samples at Petten and Lucas Heights gave identical, but unexpected, results. The Lucas Heights data were refined in $F_{\text {add }}$ and gave a higher R-factor than expected with some regions of the pattern
not showing a good fit. Some small peaks in the pattern, which could not be impurities (the room temperature refinement showed the sample was pure), were not fitted by the model. The same result was obtained with the Petten data. The set of small peaks which could not be fitted werc of the same d-spacings as those in the Lucas Heights data.

This was evidence that a further phase change occurs in $\gamma-\mathrm{UO}_{3}$ between $293^{\circ} \mathrm{K}$ and $77^{\circ} \mathrm{K}$. The transition was again displacive as the $77^{\circ} \mathrm{K}$ data were fitted reasonably well with the orthorhombic $F_{\text {ddd }}$ model and coordinates derived in this way agreed with the parameters at $293^{\circ} \mathrm{K}$ in Table V. The analysis of the Petten data at $77^{\circ} \mathrm{K}$ is presented here, as this data is

TABLE V
Positional Parameters for the $F_{\text {dd }}$ Refinement of the Petten $77^{\circ} \mathrm{K}$ Data for γ-UO ${ }_{3}$, Compared with the Parameters for the $293^{\circ} \mathrm{K} F_{d d d}$ Refinement (Lucas Ileights Data)

Atom	Data	$10^{4} x$	$10^{4} y$	$10^{4} z$	$B\left(\AA^{2}\right)$
$\mathrm{U}(1)$	$77^{\circ} \mathrm{K}, \mathrm{P}$	1250	$3123(3)$	1250	$1.07(14)$
$\mathrm{U}(1)$	$293^{\circ} \mathrm{K}, \mathrm{LH}$	1250	$3115(3)$	1250	$0.98(12)$
$\mathrm{U}(2)$	$77^{\circ} \mathrm{K}, \mathrm{P}$	5000	5000	5000	$1.07(14)$
$\mathrm{U}(2)$	$293^{\circ} \mathrm{K}, \mathrm{LH}$	5000	5000	5000	$0.45(9)$
$\mathrm{O}(1)$	$77^{\circ} \mathrm{K}, \mathrm{P}$	$0234(8)$	$4071(3)$	$0298(7)$	$0.96(13)$
$\mathrm{O}(1)$	$293^{\circ} \mathrm{K}, \mathrm{LH}$	$0261(12)$	$4081(3)$	$0258(12)$	$1.32(15)$
$\mathrm{O}(2)$	$77^{\circ} \mathrm{K}, \mathrm{P}$	$-0329(7)$	$2655(3)$	$-0221(7)$	$0.96(13)$
$\mathrm{O}(2)$	$293^{\circ} \mathrm{K}, \mathrm{LH}$	$-0284(12)$	$2652(3)$	$-0205(12)$	$1.13(15)$
$\mathrm{O}(3)$	$77^{\circ} \mathrm{K}, \mathrm{P}$	$0063(7)$	$-0632(3)$	$-0123(8)$	$0.96(13)$
$\mathrm{O}(3)$	$293^{\circ} \mathrm{K}, \mathrm{LH}$	$-0001(12)$	$-0663(3)$	$-0096(13)$	$1.96(14)$

Fig. 3. Observed and calculated neutron powder profiles for $\gamma-\mathrm{UO}_{3}$ at $77^{\circ} \mathrm{K}$ (Petten data, refinement in pseudoorthorhombic cell, $\left.F_{d d}\right)$.
of higher resolution and shows the extra peaks in more detail.

The positional parameters for the $F_{\text {ddd }}$ refinement of the $77^{\circ} \mathrm{K}$ data are compared with the $293^{\circ} \mathrm{K} F_{\text {ddd }}$ parameters in Table V.

It is seen from Table V that $O(3)$ deviates markedly from tetragonal symmetry at $77^{\circ} \mathrm{K}$, since $x \quad O(3)=0.0063(7)$ and $z \quad O(3)=$ $-0.0123(8)$. The deviations of $O(1)$ and $O(2)$ are not so marked. The observed and calculated profiles at $77^{\circ} \mathrm{K}$ (Fig. 3), show positive peaks unaccounted for by the orthorhombic $F_{\text {ddd }}$ structure, and the R-factors at $77^{\circ} \mathrm{K}$ are much higher than the statistically expected R-factor:
$R_{1}=0.110, \quad R_{2}=0.182, \quad R_{3}=0.191$ and $R_{\text {expected }}=0.078$. The χ^{2} value was 5.98. It is possible that the true cell at $77^{\circ} \mathrm{K}$ is still orthorhombic, as the profile refinement gave low errors in the orthorhombic $F_{\text {ddd }}$ cell edges Table I. The d-spacings of the extra lines suggested that the a-axis of the orthorhombic cell should be doubled. A full analysis of the $77^{\circ} \mathrm{K}$ pattern will be presented at a later date.

Refinement carried out excluding the regions of the extra peaks did not give a significant reduction in the R-factors. Thus, the misfit of the $F_{\text {ddd }}$ model was in the main reflexions as well as in the new smaller peaks. Obviously a related structure of lower symmetry must be postulated at $77^{\circ} \mathrm{K}$, just as a new structure was required on going from 373 to $293^{\circ} \mathrm{K}$.

Discussion

The structure of $\gamma-\mathrm{UO}_{3}$ is best described initially in terms of the basic tetragonal structure at $373^{\circ} \mathrm{K}$. The structure is complex, with $16 \mathrm{UO}_{3}$ units in the tetragonal cell, and because of this, the overall structure has never been adequately illustrated. The difficulty in presenting the structure, together with the low accuracy in the oxygen positions in the previous X-ray studies, has led to confusion as to the type of bonding around $\mathrm{U}(1)$ and $\mathrm{U}(2)$. The view down the tetragonal a_{2} axis is shown in Fig. 4, where the distances of the atoms from the plane of the paper are given in hundredths of a_{2}.

Fig. 4. The structure of γ - UO_{3} seen down the a_{2} axis of the tetragonal cell. Coordinates of the atoms from the paper in hundredths of a_{2} are given.

(a) The Coordination Polyhedron around $U(2)$

This is a slightly distorted octahedron. $\mathrm{U}(2)$ is surrounded by two $O(1)$ and four $O(2)$ atoms, and the octahedra form endless chains by sharing $O(2)-O(2)$ edges. The chains run parallel to a_{1} or a_{2}, depending on the height of the chain along c. Thus, chains running parallel to a_{2} along the lines ($o, y, \frac{1}{2}$) and $\left(\frac{1}{2}, y, o\right)$ are seen end-on, and a chain parallel to a_{1} along $\left(x, \frac{1}{4}, \frac{1}{4}\right)$ is seen side-on in Fig. 4. Inspection of the latter chain shows that the octahedra are alternately tilted slightly in opposite directions about [001] to allow bridging of the apical $O(1)$ atoms to $U(1)$ atoms at the same y-level, above and below the octahedra in the c-direction. The chains seen end-on similarly bridge to $\mathrm{U}(1)$ atoms in the same x level as the $\mathrm{U}(2)$ atoms through $\mathrm{O}(1)$ atoms.
The bond lengths and angles around $\mathrm{U}(2)$ are given in Table VI. As the $\mathbf{U}(2)$ octahedron has a centre of symmetry, all the $\mathrm{O}-\mathrm{U}(2)-\mathrm{O}$ diameters are linear. There is some distortion

TABLE VI
Bond Lengths and Angles in Gamma $\mathrm{UO}_{3}{ }^{*}$

Bond or Angle (\AA or deg.)	$373^{\circ} \mathrm{K}, \mathrm{P}$ (a)	Ref. (3), X-ray (b)	$293^{\circ} \mathrm{K}, \mathrm{LH}$ (c)	Ref. (4), X-ray (d)	$77^{\circ} \mathrm{K}, \mathrm{P}$ (e)
$\mathrm{U}(2)-\mathrm{O}(1)(2 x)$	1.887(5)	1.91(10)	1.866 (5)	1.88(4)	1.880(7)
$\mathrm{U}(2)-\mathrm{O}(2)(2 x)$	2330 (3)	2.27(10)	$2.205(12)$	2.16(6)	$2.165(7)$
$\mathrm{U}(2)-\mathrm{O}(2)(2 x)$	2.230 (3)	2.27 (10)	2.266 (13)	2.27(6)	2.240 (7)
$\mathrm{U}(1)-\mathrm{O}(1)(2 x)$	2.344(6)	2.34(10)	2.361 (6)	2.32(4)	2.319 (8)
$\mathrm{U}(1)-\mathrm{O}(2)(2 x)$	2.274(5)	2.19(10)	2.262(6)	2.28(6)	2.298(7)
$\mathrm{U}(1)-\mathrm{O}(3)(2 x)$	$1.796(6)$	2.06 (10)	1.796 (6)	1.79(6)	1.763 (7)
$\mathrm{U}(1)-\mathrm{O}(3)(2 x)$	3.045(6)		3.041(6)	3.06	3.009(7)
$\mathrm{O}(2)-\mathrm{U}(2)-\mathrm{O}(2)(2 x)$	76.7(2)		76.8(2)		75.1(2)
$\mathrm{O}(2)-\mathrm{U}(2)-\mathrm{O}(2)(2 x)$	103.3(2)		103.2(2)		104.9(2)
$\mathrm{O}(1)-\mathrm{U}(2)-\mathrm{O}(2)(2 x)$	91.2(2)		91.0(4)		91.9(3)
$\mathrm{O}(1)-\mathrm{U}(2)-\mathrm{O}(2)$	88.8(2)		89.0(4)		88.1 (3)
$\mathrm{O}(1)-\mathrm{U}(2)-\mathrm{O}(2)$	88.8(2)		89.3(4)		90.2(3)
$\mathrm{O}(1)-\mathrm{U}(2)-\mathrm{O}(2)$	91.2(2)		90.7(4)		89.8(3)
All O-U(2)-O diameters are 180°					
$\mathrm{O}(3)-\mathrm{U}(1)-\mathrm{O}(3)$	174.6(5)		173.9(6)		178.8(7)
$\mathrm{O}(3)-\mathrm{U}(1)-\mathrm{O}(3)(2 x)$	59.7(3)		60.0(3)		56.9(3)
$\mathrm{O}(3)-\mathrm{U}(1)-\mathrm{O}(3)$	65.9(3)		66.2(2)		68.2(3)
$\mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(2)(2 x)$	79.0(2)		78.7(2)		78.1(2)
$\mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(1)$	71.2(3)		70.8(3)		71.5(4)
$\mathrm{O}(2)-\mathrm{U}(1)-\mathrm{O}(2)$	130.8(3)		131.9(3)		132.2(4)

* (a) The tetragonal phase at $373^{\circ} \mathrm{K}$; (b) from the X-ray study of Engmann and de Wolff (3); (c) the orthorhombic phase at $293^{\circ} \mathrm{K}$; (d) from the X-ray study of the orthorhombic phase (4); (e) the $77^{\circ} \mathrm{K}$ phase, as refined in $F_{d d d}$.
of the $\mathrm{O}(2)-\mathrm{U}(2)-\mathrm{O}(2)$ angles in the equatorial plane from 90° due to the edge-fusing by $O(2)$. However, the $\mathrm{O}(1)-\mathrm{U}(2)-\mathrm{O}(2)$ angles are little removed form 90°, even though the $\mathrm{O}(1)$ atoms form strong bridges to $\mathrm{U}(1)$ atoms. The $U(2)-O(1)$ distance $(1.887(5) \AA$ in the tetragonal phase) is lengthened from the uranyl distance, $1.70 \AA$ by the bridging to $\mathrm{U}(1)$. The dimensions in Table VI support the view that $\mathrm{U}(2)$ is truly octahedral, and distortions can be readily explained by the bridging to nearby $U(1)$ and $U(2)$ atoms.

(b) The Coordination Polyhedron around $U(1)$

The arrangement around $U(1)$ is not so simply explained. Figure 5 shows that the $\mathrm{U}(1)$ atoms serve to bridge the chains of U(2)-based octahedra. In Fig. 5, the structural building-block is shown. Parallel chains of $\mathrm{U}(2)$-based octahedra bridged by $\mathrm{U}(1)$-based
polyhedra occur. The blocks in adjacent c levels are rotated by 90° about the tetragonal c-axis, and there is bridging also in the c direction (cf. Fig. 4).

Figures 4 and 5 show that $\mathrm{U}(1)$ is surrounded by eight oxygen atoms, four in each of two mutually perpendicular planes parallel to the tetragonal c-axis.

Table VI shows that $\mathrm{U}(1)-\mathrm{O}$ bonds are divided into four sets of two equivalent bonds, the shortest set being $\mathrm{U}(1)-\mathrm{O}(3)$ $(2 x)=1.796(6) \AA$ and the longest $\mathrm{U}(1)-\mathrm{O}(3)$ $(2 x)=3.045(6) \AA$. The latter two were neglected in the previous X-ray studies where the arrangement around $\mathrm{U}(1)$ was considered to be octahedral. It is shown below that the $\mathrm{O}(3)$ atoms at $3.045 \AA$ from $\mathrm{U}(1)$ are definitely part of the coordination polyhedron around $\mathrm{U}(1)$, and the true coordination number for $U(1)$ is eight.

Fig. 5. Part of the structure of $\gamma-\mathrm{UO}_{3}$ seen down the tetragonal c-axis (orthorhombic b-axis). a_{1} and a_{2} are the basal axes of the tetragonal cell and a_{o} and b_{0} the axial directions for the orthorhombic cell. The tetragonal z-coordinates of the atoms are shown in hundredths of c. The bridging of the $U(2)$ octahedral chains by $U(1)$ atoms is clear; the $O(3)$ atoms are superposed in projection.

On inspecting a model of the $\gamma-\mathrm{UO}_{3}$ structure, it is striking that the arrangement around $\mathrm{U}(1)$ is essentially distorted dodecahedral. The distortion arises from the withdrawal of two of the oxygen atoms to positions $3.045 \AA$ distant from $\mathbf{U}(1)$.

A dodecahedron is formed by the corners of two mutually perpendicular trapezoids, as shown in Fig. 6, and has the characteristic angles of $70.4^{\circ}, 71.3^{\circ}$, and 147.0° (8). The angles found in $\gamma-\mathrm{UO}_{3}\left(293^{\circ} \mathrm{K}\right)$ are 70.8°, 78.7°, and 131.9°. Thus, the geometry in this plane is very suggestive of dodecahedral symmetry (Fig. 7). It is certainly far removed from octahedral symmetry, which would require the $O(1)$ and $O(2)$ atoms to form a square with $\mathrm{U}(1)$ in the centre, the above angles to be 90° and the short $\mathrm{U}(1)-\mathrm{O}(3)$ bonds to be uranyl bonds normal to the square.

The plane of the $U(1)$ atom and the four

Fig.6. The most favorable dodecahedron (8).

Fig. 7. The arrangement of the atoms around $\mathrm{U}(1)$ in the $\mathrm{U}(1), \mathrm{O}(1), \mathrm{O}(2)$ plane.
$O(3)$ atoms is shown in Fig. 8. Here the arrangement is more distorted from dodecahedral symmetry, with $\mathrm{U}-\mathrm{O}(3)$ bonds of $1.796(6) \AA$ and $3.045(6) \AA$ and $\mathrm{O}(3)-\mathrm{U}-\mathrm{U}(3)$ angles of $60.0^{\circ}, 66.2^{\circ}$, and 173.9°. The overall bridging scheme distorts the atoms in this plane from dodecahedral. The $\mathrm{U}(1)-\mathrm{O}(3)$ distance of $1.796 \AA$ is $0.1 \AA$ longer than the uranyl distance, and therefore this bond is not terminal. This $O(3)$ atom forms an asymmetric bridge between $\mathrm{U}(1)$ atoms, the bridge distances being $1.796 \AA$ and $3.045 \AA$. The observations that (i) the $\mathrm{O}(3)-\mathrm{U}(1)-\mathrm{O}(3)$ angle of $173.9(6)^{\circ}$ is significantly different from 180°, and (ii) the short U(1)-O(3) distance is longer than the uranyl distance imply that the $\mathrm{U}(1)-\mathrm{O}(3)$ interaction at $3.045 \AA$ is significant in the $U(1)$ coordination polyhedron, and $\mathrm{U}(1)$ is eight-coordinate.

Fig. 8. The arrangement of the atoms around $U(1)$ in the $U(1), O(3)$ plane.

The edge-fused chains of $\mathbf{U}(2)$ based octahedra form the backbone of the $\gamma-\mathrm{UO}_{3}$ structure, and the peculiar 8 -coordinate geometry around $U(1)$ arises from the necessity for $\mathrm{U}(1)$ to bridge the former chains in the a_{1} and c directions. The configuration around $\mathrm{U}(1)$ is perhaps best described as dodecahedral with two ligands partially withdrawn (dodecahedral-2), or alternatively (octahedral +2).

The neutron diffraction results, which show no pure uranyl bonding, are in agreement with the previous infrared data.
(c) Influence of Temperature on the $\gamma-\mathrm{UO}_{3}$ Structure

As mentioned above, $\gamma-\mathrm{UO}_{3}$ is tetragonal above $323^{\circ} \mathrm{K}$, and transforms smoothly to an orthorhombic phase, only slightly distorted from the tetragonal phase. Thus, in Table VI, we see the bond lengths and angles change very little on going from $373^{\circ} \mathrm{K}$ to $293^{\circ} \mathrm{K}$. The phase at $293^{\circ} \mathrm{K}$ is so little removed from tetragonal that the R-factors are nearly as good for the pseudotetragonal refinement as those for the refinement in the real orthorhombic cell.

Just as the orthorhombic phase at $293^{\circ} \mathrm{K}$ will refine in the pseudotetragonal space group, we find that the lower-symmetry phase at $77^{\circ} \mathrm{K}$ will refine in the pseudo-orthorhombic $F_{\text {ddd }}$ space group; the distances and angles from the $77^{\circ} \mathrm{K}$ refinement in Table VI are probably close to the real values.
The distances and angles in the $373^{\circ} \mathrm{K}$, $293^{\circ} \mathrm{K}$, and $77^{\circ} \mathrm{K}$ refinements in Table VI indicate that the $U(2)$ octahedron remains essentially unchanged in its interatomic distances and angles. There appears to be some changes however, in the $U(1)$ polyhedron
dimensions. From $373^{\circ} \mathrm{K}$ to $77^{\circ} \mathrm{K}$ the short $\mathrm{U}(1)-\mathrm{O}(3)$ distance contracts from $1.796(6)$ to $1.763(7) \AA$, and the $\mathrm{O}(3)-\mathrm{U}(1)-\mathrm{O}(3)$ angle goes from $174.6(5)^{\circ}$ to $178.8(7)^{\circ}$. The other angles around $\mathrm{U}(1)$ remain much the same. Thus, on cooling, $O(3)$ tends to become terminal and the short $\mathrm{U}(1)-\mathrm{O}(3)$ distance approaches the uranyl distance. The cell dimensions in Table I show anisotropic changes on cooling, the a-axis expanding and b and c contracting. The symmetry change must be a result of relative movements of the octahedra and dodecahedra, the dimensions of the dodecahedra also changing slightly. The $O(3)$ atoms of the $U(1)$ polyhedron move the most. Relative rotations of octahedra occur on heating in $\beta-\mathrm{UO}_{2}(\mathrm{OH})_{2}(9,10)$, and the latter compound also shows anisotropic thermal expansion behavior.

(d) Summary

The present neutron profile studies have provided precise positional parameters for $\gamma-\mathrm{UO}_{3}$ at $373^{\circ} \mathrm{K}, 293^{\circ} \mathrm{K}$, and $77^{\circ} \mathrm{K}$, the latter being refined in a pseudo space group. The new parameters have enabled the true coordination polyhedra around $U(1)$ and $U(2)$ to be determined, and the results are in accord with the infrared spectrum at $293^{\circ} \mathrm{K}$, which shows no uranyl bonding. $\gamma-\mathrm{UO}_{3}$ shows three distinct phases between $373^{\circ} \mathrm{K}$ and $77^{\circ} \mathrm{K}$-a tetragonal phase, an orthorhombic phase and a third phase of lower symmetry.

At this juncture, $\gamma-\mathrm{UO}_{3}$ is crystallographically the best defined of the UO_{3} phases. It is also thermodynamically the most stable. The phase changes are a result of the mixed coordination-number structure, the unusually coordinated $\mathrm{U}(1)$ atom attempting to bridge
the normal octahedral chains in two different directions.

Acknowledgments

One of the authors (B. O. L.) wishes to thank Dr. E. H. P. Cordfunke for the preparation of the Petten samples and the high-temperature X-ray experiments. He also gratefully acknowledges the help of Mr. J. E. Strang in performing the Petten neutron experiments.

References

1. C. Keller, "Comprehensive Inorganic Chemistry," Vol. 5 (The Actinides) (Bailar et al., eds.), Pergamon Press, London, 219 (1973).
2. E. H. P. Cordfunke and P. Aling, Trans. Farad. Soc. 61, 50 (1965).
3. R. Engmann and P. M. de Wolff, Acta Cryst. 16, 993 (1963).
4. S. Siegel and H. R. Hoekstra, Inorg. Nuel. Chem. Letters 7, 455 (1971).
5. H. M. Rietveld, J. Appl. Cryst. 2, 65 (1969).
6. G. Caglioti, "Thermal Neutron Diffraction" (B. T. M. Willis, ed.), Chap. 2, Oxford University Press, UK (1970).
7. Neutron Diffraction Commission, Acta Cryst. A28, 357 (1972).
8. J. L. Hoard and J. V. Silverton, Inorg. Chem. 2, 235 (1963).
9. M. J. Bannister and J. C. Taylor, Acta Cryst. B26, 1775 (1970).
10. J. C. Taylor and M. J. Bannister, Acta Cryst. B28, 2995 (1972).

[^0]: * Rijksuniversiteit Amsterdam, Lab. for Crystallography, Niewe Achtergracht 166, Amsterdam, Holland.

